Numerical study of the magnetized friction force

نویسندگان

  • A. V. Fedotov
  • D. L. Bruhwiler
  • A. O. Sidorin
  • D. T. Abell
  • I. Ben-Zvi
  • R. Busby
  • J. R. Cary
  • V. N. Litvinenko
چکیده

Fundamental advances in experimental nuclear physics will require ion beams with orders of magnitude luminosity increase and temperature reduction. One of the most promising particle accelerator techniques for achieving these goals is electron cooling, where the ion beam repeatedly transfers thermal energy to a copropagating electron beam. The dynamical friction force on a fully ionized gold ion moving through magnetized and unmagnetized electron distributions has been simulated, using molecular dynamics techniques that resolve close binary collisions. We present a comprehensive examination of theoretical models in use by the electron cooling community. Differences in these models are clarified, enabling the accurate design of future electron cooling systems for relativistic ion accelerators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental studies of the magnetized friction force.

High-energy electron cooling, presently considered as an essential tool for several applications in high-energy and nuclear physics, requires an accurate description of the friction force which ions experience by passing through an electron beam. Present low-energy electron coolers can be used for a detailed study of the friction force. In addition, parameters of a low-energy cooler can be chos...

متن کامل

Application of T-shape Friction T test for Ti-6Al-4V Alloy at Elevated Temperatures

There are several parameters that have significant influence in metal forming process. One of the most important of them is friction coefficient. Friction can change the pattern of metal flow and the force needed for deformation. It is necessary to determine the friction coefficient to study the effect of friction on metal forming process. This study is concerned with numerical and experimental...

متن کامل

Numerical and Experimental Analysis and Optimization of Process Parameters of AA1050 Incremental Sheet Forming

The incremental sheet metal forming (ISMF) process is a new and flexible method that is well suited for small batch production or prototyping. This paper studies the use of the finite element method in the incremental forming process of AA1050 sheets to investigate the influence of tool diameter, vertical step size, and friction coefficient on forming force, spring-back, and thickness distribut...

متن کامل

A comparison between numerical and analytical modeling of ECAP

Recent developments in nanostructured products draw considerable attention to ultrafine grained materials. These materials are normally manufactured by different severe plastic deformation (SPD) methods. In the present study, analytical models and finite element method (FEM) are used to calculate strain imposed to a specimen that was deformed by equal channel angular pressing (ECAP). In additio...

متن کامل

Yarn pulling out test and numerical solution of penetration into woven fabric target impregnated with shear thickening fluid using SiO2 /Polyethylene Glycol

In this paper, finite element model of woven fabric target has been investigated which is impacted by a cylindrical projectile. Fabrics are impregnated with Shear Thickening Fluid (STF). The effects of the (STF) have been considered as frictional effect. The STF has been made (Nano Silica and Polyethylene Glycol (PEG)) and then diluted by ethanol proportion of 3:1. Yarn pulling out test from in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006